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BUILDING REGULAR PATTERNS WITH SIDE,
DIAGONAL AND POLYGONAL NUMBERS

|. THE ORIGIN OF THE MODEL

The models presented in this paper have been known for more than two
thousand years and originate from the ancient Grecian mathematicians. It is
worthwhile to remember that the ancient philosophers studied properties of num-
bers, as the numbers had been attributed with divine significance, so the rules
governing the numbers were assumed to be the same as those goveming every
process of the Universe. In the Pythagorean-Platonic tradition the unity (monas,
hen — metron) played a distinguished role as a principle of formation and ontolo-
gical-epistemological prius. Second principle was an indeterminate duality (aori-
stos dyas), the principle of multiplication and division. Both factors were
recognized as the ultimate principles of all beings (eidetic numbers, ideas, numbers,
geometrical and physical bodies). A natural number had not only been identified
with the power of a set of clements (systema monadon), a number as such was
conceived as a real power of the Nature. (resp. metaphysical substance) as well as
it expressed pure ontological relations (logoi). In the Pythagorean philosophy the
numbers also helped in symbolic understanding of the world. For example the
number 5 symbolised properties of physical bodies including their colours (1 —a
point, 2—a line, 3 — a flat figure, 4— a body, 6 -life, 7—mind, 8 —love, 9 —reason),
whereas the number 10 was treated as the symbol of perfection. Aristotle says that
10 contains the whole nature of the numbers [1], so 10 was called the *Arch—four’
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Fig. 1. The side number versus the diagonal number.

(tetraktys) and it was presented in the form of the triangle constructed of 10 points.
Methods of graphical representation of certein properties of the natural numbers
were improved in order to study such the phenomena as proportion, symmetry and
commensurability. It is then clear that only the numbers known now as the natural
and rational ones were the subject of interest (see for example [2]). It was Isaac
Newton who renewed and promoted a meaning of the number as being the measure
and ratio of quantities [3].

2. THE CONCEPT OF SIDE AND DIAGONAL NUMBERS

The system of numbers known as the side and diagonal ones received much
attention from the ancient mathematicians [2, 4]. The description of this system
comes from Theon of Smyma. The unit (monad), as the beginning of all entities,
originates both a side and a diameter. So the monad was the first side number as
well as the first diagonal one. Denoting side numbers as a, and diagonal numbers
as d, one may write

ar=1, di=1;
Any1 =dn+ dn, dns1 = 2“;: +dy. (1)

Theon states the proposition that

dr=2d%+(-1)" (2)

so the sum of squares of all diagonal numbers is the doubled sum of squares of all
side numbers. It is seen that the succesive fractions of d, / a, approximate better

and better the value of V 2: —, =, =

The side and diagonal numbers can be presented in a diagram like that in Fig. 1.
As follows, the side number counted at the double course race gives its square (cf.
[5]). However, the diagonal itself could be expressed by neither side nor diagonal
numbers, so Plato [6] pointed out the contrast between V50 as the irrational
(Phytagorean) diameter of 5 and the rational diameter equal to the approximation
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V50-1 = 7. Notice that d, = 7 is the diagonal number corresponding to the side
number a, = 5.
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Fig. 2. The first triangular numbers: 1, 3, 6 and 10. The second tringular number (¢2(3) = 3) is
marked.

3. THE EQUILATERAL POLYGONS
AS REPRESENTATIONS OF THE NUMBERS

The ancient philosophers used to classify the numbers according to series of
equilateral polygons that could represent certain sets of separate items (points,
stones etc.). The idea of constructing the appropriate polygons is as follows:

1. The series consists of polygons of the same number of sides, e.g. triangles (in
general k-kind polygons — of £ sides).

2. The first polygon of any kind consists of one item (as the monad was the origin
of everything).

3. The second polygon of k-kind consists of just k items put at the vertexes of
equilateral polygon of k sides, the length (in arbitrary units) of the side is equal 1:
thus the distance between items (points) at the side has been fixed. Each side
contains two items placed at the ends. The total number of items is equal k. From
this step the item, put as the first one, will always be the vertex of plygons built
at next steps.

4. Every next polygon contains the polygons built so far. The third polygon has
sides of length equal to 2 units and 3 items at the each side: two items at the ends
and one item in the middle of the side. Moreover, two sides of the second polygon
partially coincide with two sides of the third polygon. Each side of a polygon
being built has to be parallel to the relevant side of the polygons built so far.
These rules are valid for next pairs of polygons, respectively.

5. The subsequent polygons are obtained through incresing the length of the side
by one unit.
The whole procedure is illustrated in Fig. 2, which shows that the numbers that
the triangles can be builtof are: 1, 3, 6, 10, 15, 21... Note that the triangular number
represented by the triangle built at a given step is a sum of all items forming the
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Fig. 3, The first square numbers: 1, 4, 9, 16. The second square number (c2(4) = 4) is
marked.

triangles built so far, The same procedure applied to square numbers is shown in
Fig. 3.

4. THE DERIVATION OF THE POLYGONAL NUMBERS

The number of the kind &, obtained at the n-th step will be written down as
c.(k). It is easy to determine the sequence of triangular numbers even without
plotting the succeeding triangles: at the step number n one adds just the integer n:
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Fig. 4. The pentagonal numbers.
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a3 =1

c2(3)=1+2

cs(3)=1+2+3

cs(3)=1+2+3+4 and soon.

Derivation of the square number does not give any trouble: it is enough to
multiply n times » in order to obtain the relevant square number, $0 ¥V, ¢.(4) = n’,
However, the difficulty arises in the case of polygonal numbers different than the
triangular or square ones. Grecian mathematicians built up a table of sequentially
ordered triangle, square, pentagonal, hexagonal... numbers, that let them derive
any number on the basis of formerly written numbers. Since this procedure is not
essential for the purpose of this paper, it will not be presented here. Moreover, it
is possible now to determine any number ¢,(k) of any kind &, according to certain
recursive formulas, e.g.:

cn(k) = cn1(k) + (n—=2) X (k=2) + (k= 1) 3)

where k is the number of sides (and vertexes) of the polygon. For n > 2 each side
of a polygon includes » — 2 side points between vertexes. The interpretation of the
formula (3) is as follows: the polygonal number ¢,(k) built at n-th step consists of:

1. the former number ¢,_;(k),
2. plus (the number 1 — 2 of side points) times (k — 2 sides),

3. plus k- 1 vertexes. One vertex remains common with the polygons built so far.

In order to obtain the proper values of k-kind numbers it is necessary to put
cok) =0, citk)=1 4)

irrespective of the number #. The reason why the ancient mathematicians did not
know the formulas like (3) is that they were not able to write down the term co, as
they did not use the digit zero.

5. THE PENTAGONAL NUMBERS
AS A MODEL OF THE PHYSICAL STRUCTURE

It has been shown that the series of polygons could represent certain numbers.
Henceforth, the terms polygonal numbers and polygons can be used equivalently
unless it does not lead to misunderstandings.

Let us construct the series of pentagonal numbers. According to the formula
(3)theyare: 1,5, 12,22,35,51, 70... (zero has been omitted). The graph presenting
the series of pentagonal numbers up to 176 is shown at Fig. 4.
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It might be interesting to notice that the points at the graph not only form the
succeeding pentagons. There are visible 3 areas: one in the middle and two at the
sides of the graph. Within each arca the periodic order of Bravais type is preserved.
The middle area has edges (marked with dotted lines) coinciding with the edges
of the side arcas. The cincidence of the edges is perfect, i.e. the domains do not
need to be adjusted to each other in any additional way, there are no defects,
vacancies or dislocations. In other words the pentagonal numbers form a regular
pattern consisting of three crystal-like domains strictly fitted to each other. Wat-
ching this areas separately one can say that they are three crystallographic domains
in two dimensions. However, as a whole the stucture does not present a model of
a crystal belonging to any of the Bravais class [7]. Nevertheless, the structure of
pentagonal numbers type produces the diffraction of light, with the occurrence of
the ten-fold Bragg diffraction pattern, what is a characteristic feature of the
so-called quasicrystals. This a little bit surprising effect has been observed expe-
rimentally with the help of the diffraction grating prepared as a micro-slide [8],
both positive and negative, of the pentagonal number. The ten-fold pattern occurs
even in a visible light obtained from a small electric bulb (that can be regarded as
a point source of light). In a sense, the pentagonal numbers suggest another model
of the quasicrystalline structure, described with the Penrose tilling.
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BUDOWANIE WZOROW REGULARNYCH
ZLICZB BRZEGOWYCH, PRZEKATNIOWYCH I WIELOKATNYCH

Poszukiwania pochodzenia i natury liczb, prowadzone w antycznej Grecji, spowodo-
waly rozw6j metod sluzacych do geometrycznej reprezentacji zar6wno samych liczb
naturalnych, jak i zjawisk wyrazanych liczbowo: proporcji, wspolmiemosci i symetrii.
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W tradycji platoriskiej jedno$¢ (monas, hen — metron) odgrywata wyrézniong rolg jako
zasada tworzenia i ontologiczno-epistemologiczne prius. Liczba naturalna byla nie tylko
identyfikowana z mocg zbioru, to jest liczba elementow (systema monadon); liczba jako
taka traktowana byla jako rzeczywista sita przyrody.

System liczb znany jako liczby brzegowe (boczne) i przekatniowe (diagonalne),
ktérego opis pochodzi od Teona ze Smyrny, byl obicktem szerokiego zainleresowania
starozytnych matematykéw. Jednos¢é (monada), jako poczatek wszelkich bytow, jest
zasada zaréwno brzegu, jak i przekatnej, a wige jedno$¢ ma by¢ pierwsza liczba brzegowa
(a1) oraz pierwszq liczba przekatniowq (d1). Teon stwierdzil, ze suma kwadratow wszy-
stkich liczb przekatniowych dn jest réwna podwojonej sumie wszystkich liczb brzegowych
an. Kolejne ilorazy dn / an przyblizaja coraz lepiej liczbe jednak, jak zauwazyl Platon,
rzeczywista (pitagorejska) przekatna nie jest dokladnie réwna odpowiedniej liczbie prze-
katniowej.

Klasyfikacja liczb naturalnych poprzez przypisanie im odpowiednich wiclokatow jest
pierwszym przykladem badania zjawisk symetrii w sposéb sformalizowany. Liczbg kla-
syfikowano jako n — katna, jezeli z n punktéw mozna w odpowiedni sposéb skonstruowac
n-kat foremny, na przyklad liczby tr6jkatne to: 1, 3,6, 10, 15... (rys. 2), liczby czworokatne
to: 1, 4,9, 16... (rys. 3), liczby pigciokatne to: 1, 5, 12, 22, 35... (rys. 4). Jednos¢, jako
zasada wszystkiego, jest poczitkowq liczby kazdego rodzaju, a kazda liczba n-katna
zawiera w sobie wszystkie poprzednie liczby o tej samej symetrii n-krotnej. Grecy
zbudowali tablice kolejnych liczb tr6j-, cztero-, pigcio- itd. katnych, co umozliwiato im
znalezienie dowolnie duzej liczby dowolnego rodzaju. Obecnie mozna poda¢ wyrazenie
og6lne na k-t liczbe n-katna (3), przyjmujac co = 0, c1 = 1 dla dowolnego n. Poniewaz
Grecy nie zapisywali liczby zero, wyrazenie typu (3) bylo nieznane.

Obecnie interesujace jest to, ze liczby wielokatne moga mied, jak si¢ wydaje, zastoso-
wanie w fizyce ciala statego. Liczba pigciokatng opisuje strukture regularng, zbudowang
z idealnie dopasowanych trzech domen o strukturze krystalicznej, jednak jako catos¢ nie
jest modelem krysztatu, nalezacego do jednej z klas Bravais. Niemniej, struktury takie jak
liczby pieciokatne powoduja dyfrakcje przechodzacego promieniowania, charakteryzuja-
ca sie obecnoscig dziesieciokrotnie zlozonego wzoru Bragga.



