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THE EUCLIDEAN SPATIUM
IN FIFTEENTH-CENTURY MATHEMATICS

In so far as geometry is conceived as the science of laws governing the
mutual relations of practically rigid bodies in space, it is to be regarded as
the oldest branch of physics. This science was able [...] to get along without
the concept of space as such, the ideal corporeal forms — point, straight line,
plane, length — being sufficient for its needs. On the other hand, space as
awhole, as conceived by Descartes, was absolutely necessary to Newtonian
physics.
A. Einstein

INTRODUCTION

The study of the development of geometry in periods when it functionned (also)
as "branch of physics”, offers keys to better understanding of the 17th century
phenomenon called the “scientific revolution”, when the character of the relations-
hip, existing until then between geometry and physics, changed thanks to the
Cartesian, analytic approach to Euclidean geometry. Descartes’ achievement,
however, was preceded by almost two centuries of the “premodem’ (for the lack
of abetter term) investigations in mathematics and astronomy. In that way, the 17th
century scholars had at their disposal mathematics that were the result of a par-
ticularly intense evolution since the early decades of the 15th century; for instance,
the concept of the “unit segment”, applied to the geometrical expression of
arithmetical operations, was known a long time before Bombelli and Descartes
made their own discoveries. The tension between arithmetic (and arithmetized
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algebra), on the one hand, and geometry, on the other, that marked this evolution,
revealed the insufficiency of Euclidean geometry (lacking in notion of the “space
as a whole, as conceived by Descartes”, according to Einstein), and incited the
search for a remedy.

*
* *

The term "space” did not exist in Greek mathematical thought. As for the
Euclidean concept of what is called spatium in this paper, for lack of a Greek term,
it points out the spatial relations between definite objects, expressed by means of
relations between straight lines conceived as segments. Consequently, the Eucli-
dean spatium conceived as the Euclidean straight line E;, the Euclidean plane E,
and the 3-dimentional Euclidean solid Es, is a sort of metrical expression of the
form of the real, three dimensional, c1o s e d space being the subject of sensual
experience. In the history of mathematics the term "I’intuition spatiale” is equally
used in connection with Euclidean geometry for the sake of pointing to the
peculiarity of the Euclidean spatium'. In any case, spatiumin the Elements, as seen
from the mathematical point of view, was a consequence of an earlier development
of mathematics, and resulted equally from the Pythagorean concept of number, and
from the answers to difficulties raised by this concept in mathematics. It became
a challenge for mathematicians in the course of time because of the formal
difficulties inherent in the Elements, such as the existence of the Sth postulate (the
parallel lines postulate), and because of problems resulting from the “’dimensio-
nality” of the mathematical entities (as inherited from the Pythagorean metrics)?

In this paper, the latter reason of troubles with Euclid’s concept of spatium will
be discussed. In fact, the development arithmetic and algebra in Italy in 14th and
15th cent. brought forth mathematical expressions that could hardly be interpreted
by means of three dimensional Euclidean models; it led, furthermore, to the
extension of the concept of number such as to embrace also the negative numbers
and incommensurable ones. When "Geometers” experianced difficulties in de-
aling with “non-Euclidean” or non-Pythagorean” numbers, "Arithmeticians”
hurtled against the insufficiency of the concept of spatium offered by Euclid. In
the middle of the 15th century Giovanni Bianchini was among those who found
themselves in these conditions (Simon Stevin, more than a century later, experien-
ced the same difficulties). The situation looked serious because, according to the
stantards commonly accepted in classic, mediaeval and Renaissence science, what
could not be proved geometrically was judged to be "not scientific”’. On the other
hand, geometry itself was not free from evident incosistencies: there still persisted
the traditional points of collision of arithmetic with geometry which resulted from
the postulate of "homogeneity” of mathematical entities involved in arithmetical
operations, when these operations were interpreted geometrically (Elements
II). Questions were then posed of "how to multiply a line times an arca?” etc. As
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it is known, a remedy to these incosistencies, and the proposition of geometrical
interpretation of the “dimensions” of polynomials involved in arithmetical opera-
tions, came as late as in the 17th century, with Descartes’ La Geometrie and Pierre
de Fermat's Ad locos planos et solidos isagoge and his Novus secundarum et
ulterioris ordinis radicum in Analytics usus. Earlier, the "multidimensionality” of
space or "multidimensional geometric interpretations” of algebraic expressions
were proposed by Renaissance mathematicians, beginning with Luca Pacioli,
Christoff Rudolff and Michael Stiffel’,

*
* *

Research on the 15th century "mathematics for astronomers”, based on manu-
script sources, led me to the discovery of some traces of the “prehistory” of the
evolution of the Euclidean concept of space in Western mathematics, well before
the activity of Pacioli began. In this paper, problems concerning the Euclidean
spatium will be considered as they present themselves some fifty years before
Pacioli’s Summa de aritmetica, algebra, proportioni e proportionalitd was com-
posed. In what follows, I will refer to Giovanni Bianchini’s treatises Arithmetica
and Arithmetica algebrae, both written around 1440 in Ferrara, and both incorpo-
rated in Bianchini’s astronomical work, the Flores Almagesti. The first of these
treatises is devoted in part to theoretical arithmetic and in part to applications of
its theorems to the solution of numerical problems, and the second, Arithmetica
algebrae, known also as De algebra, explains to astronomers the procedures
aiming to solve the six famous forms of square equations. The exposition includes
the rules of operations with negative numbers, and with algebraic fractions. Both
treatises have already been the subject of preliminary studies®,

Bianchini’s exposition of arithmetic is remarkable for several reasons. First,
Bianchini extends the concept of number, limited in its classical form to positive
integers, and he also regards as numbers fractions, surds and negative numbers
— numerical expressions of negative values — and produces geometrical proofs
justifying the four mathematical operations with negative numbers. Then, he
exposes the idea of the "unit segment™ used for the geometrical presentation of the
extraction of square root (anticipating Bombelli’s and Descartes’ concept of the
"unit segment” used for analogue purposes) and reflects upon geometrical "'justi-
fication™ of the existence of powers and roots of degrees higher than the third.
Finally, Bianchini deals with incommensurables in the context of decimal positio-
nal fractions which he was the first in Europe to use systematically”.

Bianchini’s achievement confirms an opinion held by historians of practical
arithmetic (the arithmetic of the abacists), that it was within the framework of the
search for new tools, appropiate for the solution of numerical problems, that the
concept of number developed in Renaissance and early modern mathematics®. In
fact, it was arithmetic and algebra, both developed by Bianchini for astronomical
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purposes, that incited him to face the incosistencies in mathematics as perceived
through the relationship between arithmetic and geometry.

In what follows, first I will consider Bianchini’s concept of number as well as
his views on the arithmeticofnatural numbers (positive integers) in relation
to the Euclidean spatium (the case of the square, cubic and "related” roots, as well
as of the regular” roots and powers of degree higher than third). Then, I will turn
to Bianchini’s arithmetic of substractiveandne gative numbers. Bianchini’s
explication of how to subtract a greater number from a smaller one, and sub-
sequently his attempt to justify geometrically multiplication of binomials compo-
sed with substractive numbers — which in fact function there as the negative ones
—is a good illustration of the very special place of Bianchini’s achievement in the
rise of early modern mathematics. (Let me signal at this point that the same
geometrical construction as that of Bianchini’s, justifying operations with negative
numbers in accordance with the "law of signs”, was subsequently given by Simon
Stevin in the Arithmétique (1585).

1. EUCLIDEAN SPATIUM AND BIANCHINI'S CONCEPT OF NUMBER

As I tried to demonstrate in my former papers, in the Arithmetica, Bianchini
breaks off with the Euclidean number understood as a result of a cumulation of
units (Elements VI1.2), Consequently, he rejects the concept of unity as being not
a number in the proper sense of the term but "an origin of numbers”; at variance
with Bianchini, Georg Peurbach states in the Opus Algorithmi iocundissimum (ca
1450) as follows: "Unitas autem non est numerus sed principium numeri. Unde
ipsa habet se in Arithmetica sicut punctum in Geometria ad magnitudinem”, In
Bianchini’s Arithmetica a unity is considered as a number among other numbers:
it is divisible and, of course, it may also serve as a divisor. In fact, Bianchini uses
the inversion of a number for multiplication, and furthermore he introduces uni-
ty in his concept of proportion. In that way, he can express multiplication through
a ’ratio™®,

When fractions are divided by integers, they are multiplied by unity
in proportion to the number of divisor. [...]

In multiplication, three [elements] are required: the multiplied, then the
multiplicand, and the product. The proof of this is division, because if the
product is divided by the multiplied the result will be the multiplicand, and
on the contrary, if [it is divided] by the multiplicand the result will be the
multiplied.

And this holds for the discrete quantityg.

Accordingly, for Bianchini, multiplication is no longer a "'repeated addition”
or an “abridgement of addition” (as for Peurbach, he omits the definition of
multiplication in the chapter of the Opus Algorithmi dedicated to this operation,




The Euclidean Spatium in fifteenth-century mathematics 31

and passes to the examples). In fact, Bianchini seems to be the first European
mathematician to state the theorem of division and to use it in the definition of
multiplication.

As for Bianchini’s concept of negative number (a number representing a ne-
gative value), first it appears in relation with subtraction, when the subtrahend is
geater than the minuend:

[...] thus, you have subtact 55 from 50. And since the subtrahend is
greater than the minuend, do the converse, subtract 50 from 55, [and there]
remains 5'°, Thus, in our notation:

50-55=50+(-55)=-5

Bianchini uses the term "additio minuenda’ (addition that diminishes) for such
operations, This “diminishing™ may go as far as to give as result a number smaller
than zero. Subsequently, Bianchini will operate with numbers “smaller than 0" just
as with the positive ones, respecting the rules of signs.

In the Arithmetica two terms appear in relation to negative numbers: “diminu-
tum” and "minus”.

The following is an example of the use of "diminutum’”:

[...] in the subtrahend there isthe rootof 24 diminished, which
you have to add to the root of 5

But when Bianchini formulates the “law of signs”, he no longer uses the term
“diminutum” but the term "minus”, that means thene gative number
(considered as an abstract, existing independently from the physical reality, also
independently from the physical space, and thus, not meaning, for instance, a "ne-
gative direction”). The idea of negative numbers that clearly results from Bianchi-
ni's Arithmetica (cf. the example of substraction given above, and then, below, the
use of the term “minus” in the “law of signs”) allows us to suppose that in ope-
rations with polynominals with negative coefficients (subtractive numbers) Bian-
chini was also aware that a subtractive number can function as a negative one,
expressed as a + (—a) = 0. Furthermore, as it is signalled, Bianchini admits negative
products, calling them the “products minus”.

2. EUCLIDEAN SPATIUM,
BIANCHINI'S CONCEPT OF "NEGATIVE PRODUCT”,
AND THE GEOMETRICAL "PROOF”

OF MULTIPLICATION "PLUS TIMES MINUS”

It is interesing 1o note that the law of signs appears in the context of multipli-
cation of roots, the multiplication of surds included. Chapter 13 of the Arithmetica,
De practicaradicum adinvicem, in which the law of signs is presented, begins with
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the definition of multiplication of discrete numbers, then a [geometrical] defini-
stion of multiplication of continuous quantities is given, followed by the "laws of
signs”'2,

Bianchini’s laws of signs are formulated in the way we use to find in modem
text-books of arithmetic. Here, I will quote the second of Bianchini’s laws, the first
being trivial (multiplication plus times plus), and the third (multiplication minus
times minus) being already discussed elswhere, and I will try to present the way
Bianchini uses the Elements for the sake of constructing his geometrical proof”,
justyfying the multiplication "plus times minus”*?,

[2] When plus is multiplied times minus or minus times plus, the product
will be minus. And this results [from the fact] that the more minus increases

or plus decreases, themore the product minus [tne negative product]
increases.

The statement [2]: ’the more minus increases or plus decreases, the more ’the
product minus’ [the negative product] increases”, strange as it might seem, points
the character of Bianchini’s concept of number. In fact, Bianchini’ statement that
“the m o re the minus (negative number) diminishes the m o r e the plus (positive
result) increases”, and thus, eventually, in [3] the statement when minus is multiplied
times minus the result is plus”, concems operations with numbers considered as
abstracts, and not as expressions of physical reality any more. For this reason
Bianchini’s "numbers” function hereindependently of the Euclidean
concepts of number and of space. Nevertheless, Bianchini refers to the Elements
in his construction of the "proof™ of the [2]. This "proof™ is given in chapter 17 of
the Arithmetica, entitled De multiplicatione plus per minus, where Bianchini
considers the following example (4 + K 9)(8 —\ 16). A remark has to be made (o
this proposal: in the numerical example obviously V16 functions as a negative
coefficient (and not a negative number):

A N Q

a——
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AB=QM=4 AC+AN=0 ANCO ="

AQ=BM=8 0 AQCT = 0 AQBM + 0 BMCT = 56
BC=MT=+9  AB+AQ=0AQBM=32

QN=(J16)[']  BM=«BC =0 BMCT =24

AC=@d++9)  NQI[quaeest Rx de 16!] + 4 = +/256 = 16

AQ=8 OT [quae est Rx de 16!] « TM [Rx de 9] = V144 = 12
AN=(@8-+16) 0OANCO=0AQCT- 0 NQOT=28

I will multiply 4 plus the root of 9 times 8 minus the root of 16. I draw
lines of multiplication at right angle in the point A: AB that is 4 and BC that
is the root of 9. Also AQ is 8 and QN is the root of 16.

It is obvious, from that was declared above, that the product AC times
AN is an area of a quadrangle ANCO. And first I will look for its quantity.
I'multiply line AB times AQ and I'receive a quadrangle AQBM [...] the area
of which is 32. I mul- tiply BM, equal AQ, times BC, which is the root of 9,
and this will give the area of the quadrangle. BMCE, equal to the root of
576, i.e. 24; thus, it is obvious that the whole area AQCT is 56, from which
the area NQOT has to be subtracted.

So multiply NQ, the root of 16, times QM that is 4 and the product will
be root of 256.

Equally, I will multiply OT, the root of 16, times TM the root of 9, and
the product will be the root of 144, These two areas taken together are [equal]
to the root of 784, i.c. 28, that subtracted from the whole area AQCT, which
is equal to 56, the rest is the area ANCO 281,

3. EUCLIDEAN SPATIUM AND THE POWERS AND ROOTS

Problems with the Euclidean spatium manifest themselves at the beginning of
chapter 8 of the Arithmetica, entitled De practica in radicibus universalibus
operanda, where an explication of terms is given. Bianchini’s discussion of powers
and roots, the surd roots included, is conducted on two levels, arithmetical and
geometrical. Bianchini uses the terms "finis” and "pronomen” for ”power” and the
term “radix” for “root”. Sometimes however, "radix”” means both "root” as well
as, what we call a "number as considered in its first power’”:

Root means the same as the priciple or origin or foundation, and obtains
its name from its determined end. Sometimes this determined end [number]
is looked for by means of the root that is given, and sometimes on the
contrary, the root is looked for by means of the given number. [...]
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A surd rool isfoundbymeanlsnf lines or planes or solids,
with geometrical demonstrations

In chapter 9 of the Arithmetica, De tribus generibus radicum |...], Bianchini
considers square roots, cube roots and the “'related roots” — "radices relatae”, and
in this fragment he seems to assert that only these three kinds of roots exist:

On the square root in numbers orinarithmetic. All [each] number
multiplied by itself is the root of this product.

Ingeometry each line multiplied by itself constitutes a square that
is circumscribed by four equal lines and [has] four right angles. The line
expressing thequantity ofthesurface isits root or its square
root.

Secondly on the cube root. [ state thatarithme tic the cube root
means a number that is multiplied by itself and they multiplied by this
product, and thus the cube root of the [ultimate] product is this [first] number.

Ingeometry aline multiplied by itself produces a square surface
that multiplied by a s quare surface [!] produces a cube [!].

Thirdly on the related root. I state that a root related absolutely means
arootrelated to itsownroot. Inarithmetic itis understood as a number
multiplied by itself and the product multiplied by the root of the [first]
number [a- a- V. This number is called the related root of the last product.
For instance 4 multiplied by itself gives 16, which multiplied times root of
4 gives the product of 32, of which the related root is 4, and the root of 4,
which is 2, I will call the minimum root.

In geome try thisis understood [as follows]: All square surface
times itself constitutes a solid of the four square, equal surfaces. [This solid]
multiplied by the ro o t of the first surface forms theultimate solid
[!1, of which the related root is equal to the surface of the first square.

And these solidscannot bewelldemonstrated on surfaces
(planes), but the examples given in numbers are clear'®,

As it follows from the definitions given above, Bianchini was not always aware
thatonly the square roots and the second powers of numbers do not present
difficulties when considered from the point of view of theirs patial character.
In the case of a number raised to the third power, the inconsistency between
arithmetical expression of the power and a spatial (geometrical) one is to be noted
(this inconsistency, however, was noted by Bianchini). Actually, though Bianchi-
ni’s a’ expressed arithmetically means

a-a-a=a’
the same a® expressed geometrically, as "a line times a line, and times a plane”,
means
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In fact, Bianchini found himself, while offering a geometrical interpretation of
the third power, between the Scylla of the principle of homogeneity (homogenea
homogeneis comparari...), and the Charybdis of the lack of a propergeometrical
to ol toraise a number (expressed as a line segment) to the third power in the
framework of the Euclidean geometry.

As for the third sort of roots (and powers), the "'related roots”, Bianchini admits
that in this case the incompatibility of arithmetic with geometry manifests itself
plainly. And, after giving this statement, he seems to circumvent this "incompati-
bility” rather than to face it. According to him, the situation is simply due to the
fact that the demonstration concerning solids cannot be performed on sufaces
(planes), but the examples given in numbers are clear”!”. This statement, closing
the discussion, may be interpreted as follows: what matters eventually in arithmetic
is the correct solution of an arithmetical problem, givenin numbers. Inthat
way, in the presentation of the radices relatae, the question of the compatibility of
the arithmetical expressions with Euclidean spatium is simply ignored. Thus,
Bianchini discredits here geometry as a discipline "furnishing proofs”.

The same tendency to liberate arithmetic from geometry dominates the Arith-
metica algebrae, the second of Bianchini’s mathematical treatises included in the
Flores Almagest, in which Bianchini considers i.a. operations that lead to the
“square of square”. When introducing the basic notions of algebra, Bianchini gives
the geometrical models that correspond to the first, second and third power. As for
the ’square of a square”, the case is not discussed:

In the whole practice of the rules of algebra four denominations or four
names are commonly used, namely res, census, cubus and census de censu.
Res means root, census means a square or a square plane (surface), cubus
means a solid. Census de censu is a square of a square. All these originate
from a root or from res'®,

Generally, Bianchini, when operating with algebraic expressions, algebraic
fractions included, is not disturbed by the lack of geometrical entities that would
correspond to them. In there circumstances, he sometimes simply signals the
insufficiency of Euclidean spatium, when the arithmetical operations lead to the
results "overpassing” the dimensions of physical reality — and sometimes he
remains in doubt as to the admissibility of such operations rather than as to validity
of Euclidean concept of spatium. The latter reaction seems to indicate that Bian-
chini was aware of the serious philosophical consequeces of the apparently trivial
arithmetical problems: the admission of powers and roots of a degree higher than
the third would require the admission, in the framework of Euclidean concepts of
number and of space, of entities corresponding to such mathematical objects. This
admission, at its turn, would equally contradict the sensual evidence, and the
Euclidean concept of spatium that resulted from it. Thus, all declaration in favor
of mathematical objects such as a* or 5a would question the status of Euclidean
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geometry considered not only as a model of scientific thinking, but also as the
model of physical reality. One can easily imagine that Bianchini, being not only
a mathematician but also an astronomer, was by no means interested in a similar
resolution, since it would also question the validity of his own geometric (kinema-
tic) models explaining the univers'?,

CONCLUSION

As it results from the Arithmetica and Arithmetica algebrae, Bianchini was
aware of the formal insufficiency of Euclidean geometry as related to arithmetic
and algebra, both considerably developed by himself. Bianchni's concept of
number, extended to negative numbers, and his free use of the powers and roots,
surpassed the possibilites of geometrical representations offered by Euclid. Inspite
of this insufficiency of the Elements Bianchini had to accept the concept of spatium
inherent to the Euclidean geometry. He just limited himself to ignoring the
Euclidean spatium w h e n it presented a hindrance in justifying the arithmetical
operations with "nen-Euclidean” numbers. Otherwise, Bianchini remains with
Euclid, aware (as it seems) of the fact that the complete liberation of mathematics
from the Euclidean spatium would signify the liberation of mathematics from
reliance on sensual experience: a situation hardly acceptable for a 15th century
astronomer working with geometrical models of the univers.

Since 15th century geometry obviously lacked tools to express the concept of
number as it is present in both, Arithmetica and Arithmetica algebrae Bianchini’s
arithmetic and arithmetized algebra found themselves in a sort of vacuum with
regard to geometry (except for the idea of the unit segment that appears in the
Arithmetica).

Two centuries later, new ways to present relations between number and
magnitude, thus the relations between number and space, and consequently be-
tween mathematics and physics, are presented in Descartes’ Geometry (1637).
Newton’s concepts of space will be created in the framework of these new relations.

Notes
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Encyclopedic Dictionary of Mathematics. 2 nd Ed, Cambridge Mass. and London 1987.
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catione tria requiruntur: numerus multiplicans, secundo multiplicandus et productum.
Cuius probatio est divisio, quia si productum dividatur per multiplicantem exibit multipli-
candus et econverso, si per multiplicandum exibit multiplicans. Et hoc in quantitate
discreta.
See also above, note 8. All Bianchini’s texts are quoted following the critical edition of the
Arithmetica, based on the manuscripts preserved in Italy: Bibliotheca Apostolica Vaticana,
Vat. Lat. 2288, ff. 16-25v and Vat. Reg. Lat. 1115, ff. 38r—52r; Perugia, Biblioteca
Comunale Augusta, 1004, ff. 1r-8r. In Poland: Cracow, Biblioteka Jagielloriska, BJ 558,
ff. 1r—12r, and in France: Paris, Bibliotheque Nationale, BN. Lat. 1025, ff. 6r-23r. See also
G.Rosifiska, A Chapter, pp. 5-6 and 14 notes 8-10. The s pa tia in Bianchini’s
texts are mine,
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OBianchini: Arithmetica. [...] Debes ergo de 50 plus subtrahere 55. Et quia
numerus subtrahendus excedit numerum a quo debet subtrahi, fac econverso, subtrahe 50
de 55, restant 5. See G.Rosinska, A Chapter, pp. 12 and 18 n. 29.

W Bianchini: Arithmetica. Prout in proposito: in parte subtrahenda est radix de
24diminuti, quam debes applicare radici de 6. (V24 +V6).

12 The rules of computation with the subtractive numbers (negative coefficients
appearing in binominals) go back to Diophantos, 3rd century AD. The first formulation of
the rules of computation with ne g ative numbers appears in Europe centuries later, in
a 10th century treatise. This treatise, however, according to historians did not exert
influence on next generations of mathematicians. M. Folk erts: Pseudo-Beda: De
arithmeticis propositionibus. Eine matematische Schrift aus der Karolingerzeit, In: "Sud-
hoffs Archiv” 26 1972 pp. 22-43. H.Gericke, op.cit pp. 288-290.J.Sesiano:
The Appearance of Negative Solutions in Mediaeval Mathematics. In: " Archive for History
of Exact Sciences” Vol. 32 1985 p. 106.

BBianchini: Arithmetica. Cap. 13: Quando plus multiplicatur per minus aut
minus per plus productum erit minus et hoc patet quia quanto minus augetur aut plus
minuetur tanto productum fiet minus, Multiplication “minus times minus”™ was discussed
in my: A Chapter, op.cit. pp. 7-8.

W4 Bianchini: Arithmetica. Cap. 17; Rursus volo multiplicare 4 plus radix de 9 per
8 minus radix de 16. Firmabo lineas multiplicationis supra punctum A ad angulum rectum
AB, scilicet, quae sit 4 et BC radix de 9. Item AQ sit 8 et QN fuit radix de 16.
Manifestum est per id quod supra declaratum est quod productum AC per AN est
superficies quadranguli ANCO, cuius primo quaero quantitatem. Produco enim lineam AB
per AQ et fiet quadrangulum AQBM lateribus aequedistantibus et contra se positis
aequalibus, cuius superficies est 32.

Item producam BM quae aequatur AQ per BC, quae estradix de 9, et producitur superficies
quadranguli BMCE quae est radix de 576, id est 24, quare manifestum est quod tota
superficies AQCT est 56, a quibus minuenda est superficies NQOT,

Multiplica ergo NQ, quae est radix de 16, per QM quae est 4, et fiet productum radices de
144, Quae duae superficies simul iunctae sunt radices de 784, id est 28, quare tota
superficies NQOT est 28, qui subtracti a tota superficie AQCT quae est, ut supra 56, restat
superficies ANCO 28, quod est propositum.

Bianchini: Arithmetica. Cap. 17: Cuiusre g ul am accipe per modum supra dictum,
videlicet multiplica 4 per 8 erit productum 32. Item 8 per radicem de 9 plus producitur
radix de 576 plus. Item 4 per radicem de 16 minus producitur radix de 256 minus. Item
plus radix de 9 per minus radix de 16 producitur radix <de> 144 minus. Adde ergo 32 cum
radice de 576 quae est 24 erit corum summa 56, a quibus subtrahe radices de 256 et de 144,
quae sunt 28, restant etiam 28, quod est idem propositum,

5Bianchini: Arithmetica. Radix idem sonat sicut principium vel ortus aut
fundamentum et secundum eius determinatam finem acquirit pronomen, Et aliquando per
notam radicem datam quaeritur eius determinatus finis et aliquando econverso, per datum
pronomen quaeritur radix ex qua oritur. [...] Surda radix [...] invenitur per lineas aut
superficies aut corpora cum geometricis demonstrationibus.
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I16Bianchini: Arithmetica. Radix quadrata in numeris seu in arithmetica. Omnis
numerus in se ductus vocatur radix producti. [...] In geometria autem omnis linea in
se ducta constituit quadratum circumscriptum a quatuor aequis lineis et quatuor rectis
angulis, cuius superficiei quantitatis linea, ipsa est radix seu radix quadrata.

Secundo de radice cubica. Dico quod radix cubica in arithmetica dicitur numerus qui in se
ductus et iterum in productum, ille numerus dicitur radix cubica istius ultimi producti. [...]
Ingeometria autem linea in se ducta producit superficiem quadratam et etiam
multiplicata persuperficiem quadratam producit corpus cubicum.

Tertio de radice relata. Dico quod radix relata absolute intelligitur relata a sua radice, quae
in arithmetica intelligitur omnis numerus in se ductus et productus in radice ipsius numeri.
Ille numerus vocatur radix relata istius ultimi producti, ut 4 in se ductus producit 16, qui
ductus in radicem de 4 producit 32, cuius radix relata est 4, cuius etiam radix quae est
2 nominabo radicem minimam.

Ingeometria autem intelligitur: Omnis superficies quadrata in se ducta constituit
corpus quadratum aequalium superficierum, quod etiam ductum in radice superficiei primi
quadrati formaturultimum corpus, cuius radix relata vocatur superficies primi
quadrati,

17Bianchini: Arithmetica. Etistac orpora male in superficic plana possunt
demonstrari, sedinnumeris patet exemplum.

18Bianchini: Algebra. Intota practicaregularum algebrae quatuor denominationes
seu quatuor vocabula cummuniter utuntur scilicet res, census, cubus et census de censu.
Res enim idem sonat quantum radix. Census autem quadratum sonat seu superficiem
quadratam. Cubus vero corpus solidum. Que omnia a radice seu a re oriuntur,

19 Bianchni's planetary models are essentially Ptolemean, with the exception of the
improvement introduced by Bianchini to the Ptolemean model of the Moon.

Grazyna Rosiriska

SPATIUM WEDLUG EUKLIDESA
JAKO PROBLEM W MATEMATYCE XV WIEKU

Koncepcja tréjwymiarowej, metrycznej ,,przestrzeni” w Elementach Euklidesa byta
wynikiem zaréwno pitagorejskiej koncepeji liczby, jak i odpowiedzi dawanych na trudno-
Sci, jakie wynikaly dla matematyki z takiej wlasnie koncepcji. Zatem, Euklidejska prze-
strzeni (termin ,,przestrzeni” nie zaistnial jednak w mysli starozytnej, dlatego, respektujac
szczegblno$¢ Euklidejskiej ,,przestrzeni” i w celu uniknigeia wieloznacznosci wprowadzo-
no tutaj na jej okreslenie termin spatium), byta ograniczona do ,przestrzennych relacji”
migdzy okreSlonymiprzedmiotami. Relacje te byty wyrazane poprzez relacje
mig¢dzy odcinkami. Innymi stowy, pojecie ,,przestrzeni” u Euklidesa bylo, w pewnym
znaczeniu, formalnym wyrazem realnej, tréjwymiarowej, zamknigtej przestrzeni, odbie-
ranej w poznaniu zmystowym [przypisy 1, 2].
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Problemy ze spatium zaczely sig jeszeze w staroZytnosci i miaty swe Zrédlo z jednej
strony w formalnych niedoskonalosciach Euklidejskiego systemu geometrii (kwestia
postulatu ,,O rownolegtych”) z drugiej zas strony wynikaly zrozwoju arytmetykiialgebry,
weielonych do geometrii (geometria bowiem uzasadniala ich twierdzenia), natomiast
w rzeczywistosci ,,nie mieszczgcych sig” w koncepeji geometrii odcinkow wyrazajacych
rzeczywistos¢ (w tym przestrzei) fizyczna, o czym wyzej. Przede wszystkim ta druga
sprawa, a takze kwestia geometrycznej prezentacji liczb ujemnych, sa przedmiotem
rozwazaii w obecnym studium, Jak wiadomo problemy te zostaly rozwigzane w XVII
wieku w Geometrii Descartesai w dzielach Fermata, dzigki ujeciu relacji ,,przestrzennych”
w sytemie wspGlrzednych i wyraZeniu przestrzeni ,,jako calosci” (o czym méwi Einstein
w zacytowanym fragmencie).

Zanim jednak przyszly te nowozytne rozwigzania, problem stwarzany przez Euklide;-
skie spatium byl realng trudnoscig dla arytmetyki i algebry, operujacych juz innym
pojeciem liczby niz to, ktéremu odpowiadaly Elementy. Fakt, ze nie bylo modelu geome-
trycznego dla poteg i pierwistkéw wyzszych niz trzeci oraz brak koncepcji ,,odcinka
ujemnego”, ktory wyrazatby liczby ujemne (wprowadzone przez Giovannicgo Bianchi-
niego do matematyki juz w potowie XV wieku), kwestionowat status arytmetyki i algebry
jako nauki, bowiem to czego nie mozna byto udowodni¢ geometrycznie ,nie byto nauko-
we”. (Tu prawdopodobnie tkwia powody zahamowania matematyki ,uniwersyteckiej”
w XV i XVI wieku oraz jej rozwdj w $rodowiskach handlowcéw «scuole d’abbaco»,
inzynier6w i architektow) [przypisy 6, 7, 12].

Sytuacja matematyki w XV wicku w aspekcie jej odniesien do Euklidejskiego spatium
ukazana jest na przykladzie dwoch traktatéw Bianchiniego, poswigconych wyktadowi
arytmetyki oraz wyktadowi algebry. Oba traktaty byly juz przedmiotem wczesnicjszych
studiéw, majacych na celu ukazanie XV-wiecznych Zrédet matematyki nowozytnej (wpro-
wadzenie przez Bianchiniego ulamkéw dziesietnych oraz liczb ujemnych, traktowanie
niewymiernosci jako liczby, koncepcja ,.odcinka jednostkowego™ i jego funkcjonowa-
nie w wyrazaniu niewymierno$ci) [przypisy 3, 5, 8, 9]. Gdy chodzi o stosunek Bianchi-
niego do Euklidejskiego spatium, to w niektérych przypadkach (jak mnozenie liczb o
,r6znych znakach” — wg obecnej terminologii), Bianchini wydaje si¢ nieSwiadomy trud-
nosci zwigzanych z istnieniem “ujemnego odcinka”, podobnie zreszta, jak przeszlo sto lat
po Bianchinim, nie byt tych trudnosci §wiadomy Simon Stevin (w rzeczywistosci odcinek
w ich dowodach na mnozZenie liczb ujemnych jest zawsze odcinkiem dodatnim, konse-
kwentnie nie ma tez mowy o "ujemnej plaszczyznie”). W innych przypadkach, Bianchini
ukazuje nieprawidtowosci wynikajace z interpretowania geometrycznie wyrazefi arytme-
tycznych czy algebraicznych i w zwigzku z tym niewystarczalno$¢ Euklidejskiej koncepcji
spatium. Na przykiad, gdy mowi otwarcie o niemozliwosci przedstawienia geometrycznie
dziataii z potggami i pierwiastakmi powyzej trzeciego stopnia. Woéwczas rolg dowodu
spelnia poprawno$¢ rozwigzania przedstawionego ,,w liczbach™ [przypisy 10, 11, 13-18].

Wreszcie Bianchini wprowadzil szczegdlna konstrukcje geometryczng z udziatem
wodcinka jednostkowego™ (ale jej w pelni nie wykorzystat). Konstrukcja ta pojawi sig
nastepnie u Bombellego, a u Descartesa stanie si¢ podstawg do zdefiniowania geometry-
cznie dziatan arytmetycznych, z unikni¢ciem trudnosci ,,przestrzennych”. Bedzie to doko-
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nane w ramach geometrii Euklidesa, ale w nowy spos6b. Dzigki temu wiasnie Descartes

stanie si¢ autorem nowego, ,.calosciowego” ujecia przestrzeni, ,,niezbednego dla fizyki
Newtona”.




